\(\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx\) [130]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 68 \[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

2*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*
cos(f*x+e))^(1/2)/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {2921, 2721, 2719} \[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(g*Cos[e + f*x])^(3/2)/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

(2*g*Sqrt[Cos[e + f*x]]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c
*Sin[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(g \cos (e+f x)) \int \sqrt {g \cos (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {\left (g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.09 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.63 \[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {2 (g \cos (e+f x))^{3/2} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )}{f \cos ^{\frac {3}{2}}(e+f x) \sqrt {a (1+\sin (e+f x))} \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(g*Cos[e + f*x])^(3/2)/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

(2*(g*Cos[e + f*x])^(3/2)*EllipticE[(e + f*x)/2, 2]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] +
Sin[(e + f*x)/2]))/(f*Cos[e + f*x]^(3/2)*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.58 (sec) , antiderivative size = 424, normalized size of antiderivative = 6.24

method result size
default \(\frac {2 \left (i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \left (\cos ^{2}\left (f x +e \right )\right )-i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \left (\cos ^{2}\left (f x +e \right )\right )+2 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \cos \left (f x +e \right )-2 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \cos \left (f x +e \right )+i \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right )-i \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right )+\cos \left (f x +e \right ) \sin \left (f x +e \right )\right ) \sqrt {g \cos \left (f x +e \right )}\, g}{f \left (1+\cos \left (f x +e \right )\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(424\)
risch \(\text {Expression too large to display}\) \(1141\)

[In]

int((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/f*(I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f
*x+e)^2-I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*co
s(f*x+e)^2+2*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),
I)*cos(f*x+e)-2*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e
)),I)*cos(f*x+e)+I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+
e)),I)-I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)+cos
(f*x+e)*sin(f*x+e))*(g*cos(f*x+e))^(1/2)*g/(1+cos(f*x+e))/(a*(1+sin(f*x+e)))^(1/2)/(-c*(sin(f*x+e)-1))^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.13 \[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {-i \, \sqrt {2} \sqrt {a c g} g {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + i \, \sqrt {2} \sqrt {a c g} g {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{a c f} \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*sqrt(a*c*g)*g*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))) +
I*sqrt(2)*sqrt(a*c*g)*g*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e))))/(a*
c*f)

Sympy [F]

\[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {\left (g \cos {\left (e + f x \right )}\right )^{\frac {3}{2}}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )}}\, dx \]

[In]

integrate((g*cos(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Integral((g*cos(e + f*x))**(3/2)/(sqrt(a*(sin(e + f*x) + 1))*sqrt(-c*(sin(e + f*x) - 1))), x)

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)/(sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m operator + Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}}{\sqrt {a+a\,\sin \left (e+f\,x\right )}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(1/2)),x)

[Out]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(1/2)), x)